Versions of this keep popping up on my LinkedIn with amazing regularity. People have told me this in a non-ironic way in personal conversations as well, so I assume that it is true.
And now that I’m back in the job market, I’ve been thinking of a corollary to this – basically, if you apply “backward induction” to the above statement, then it essentially means that you “join a boss” rather than “join a company”?
I mean – if the boss is the reason why you quit a particular job, then shouldn’t you be thinking about this at the time when you’re joining as well? And so, while you’re interviewing and having these conversations, shouldn’t you be on the lookout for potential bad bosses as well?
In that sense, as I go through my hunt, I’ve been evaluating companies not just on the basis of what they do and what they might expect me to do, but also on the basis of what I feel about the people I talk to. In some places, I have an idea on who I could potentially report to, and in some I don’t. However, I treat pretty much everyone I talk to as people I have to potentially report to or work with at some point of time or the other, and evaluate the company based on these conversations.
Sometimes I think this might be too conservative, but at other times I think that this conservatism now is worth any potential trouble later.
A few people who I’ve spoken to as part of my job hunt have asked to see some “detailed descriptions” of work that I’ve done. The other day, I put together an email with some of these descriptions. I thought it might make sense to “document” it in one place (and for me, the “obvious one place” is this blog). So here it is. As you might notice, this takes the form of an email.
I’m putting together links to some of the publicly available work that i’ve done.
1. Cricket
I have a model to evaluate and “tell the story of a cricket match”. This works for all limited overs games, and is based on a dynamic programming algorithm similar to the WASP. The basic idea is to estimate the odds of each team winning at the end of each ball, and then chart that out to come up with a “match story”.
And through some simple rules-based intelligence, the key periods in the game are marked out.
The model can also be used to evaluate the contributions of individual batsmen and bowlers towards their teams’ cause, and when aggregated across games and seasons, can be used to evaluate players’ overall contributions.
Here is a video where I explain the model and how to interpret it:
The algorithm runs live during a game. You can evaluate the latest T20 game here:
Here is a more interactive version , including a larger selection of matches going back in time.
Related to this is a cricket analytics newsletter I actively wrote during the World Cup last year. Most Indians might find this post from the newsletter interesting:
2. Covid-19
At the beginning of the pandemic (when we had just gone under a national lockdown), I had built a few agent based models to evaluate the risk associated with different kinds of commercial activities. They are described here.
Every morning, a script that I have written parses the day’s data from covid19india.org and puts out some graphs to my twitter account This is a daily fully automated feature.
Here is another agent based model that I had built to model the impact of social distancing on covid-19.
The more perceptive of you might have realised that I’m in the job market.
After nine wonderful years, I've decided to shut down my strategy and data consulting business. Will start looking for a job soon. Leads and recommendations welcome (preferably email/message me off twitter)
Over the last one month, my search has mostly be “breadth first” (lots of exploratory conversations with lots of companies), and I’m only now starting to “go deep” into some of them. As part of this process, I need to send out a pitch to a company I’ve been in conversation with regarding what I can do for them.
So I’ve been thinking of how to craft my mandate while keeping in mind that they have an existing data science team. And while I was thinking about this problem, I realised that I can model it like how investment banks (at least one that I worked for) do – in terms of “core quants” and “desk quants”.
I have written about this on my blog before – most “data scientists” in industry are equivalent to what investment banks call “core quants”. They are usually highly technically accomplished people; in many cases they are people who were on an academic path that they left to turn to industry. They do very well in “researchy” environments.
They’re great at running long-gestation-period assignments, working on well defined technical problems and expressing their ideas in code. In general, though (I know I’m massively generalising), they are not particularly close to the business and struggle to deal with the ambiguities that business throws at them from time to time.
What I had mentioned in my earlier post is that “main street” (the American word for “general industry”) lacks “desk quants”. In investment banks, desk quants are attached to trading desks and work significantly closer to the business. They may work less on firmwide or long term strategic projects, but their strength is in blending the models and the markets, and building and making simple tweaks to models so that they remain relevant to the business.
And this is the sort of role in which I’m planning to pitch myself – to all potential employers. That while I’m rather comfortable technically, and all sorts of different modelling techniques, I’m not “deep into tech” and like to work close to the markets. I realise that this analogy will be lost on most people, so I need to figure out a better way of marketing myself. Any ideas will be appreciated.
Over the last month or so I’ve been fairly liberal and using my network to get introductions and references. The one thing I’ve struggled with there is how they describe me as. Most people end up describing me as a “data scientist”, and I’m not sure that’s an accurate description of what I do. Then again, it’s my responsibility to help them figure out how best to describe me. And that’s another thing I’m struggling in. “Desk quant” doesn’t translate well.
For the last eight years, I’ve worked from home with occasional travel to clients’ offices. How occasional this travel has been has mostly depended on how far away the client is, and how insistent they are on seeing my face. Nevertheless, I’ve always made it a point to visit them for any important meetings, and do them in person.
Now, with the Covid-19 crisis, this hybrid model has broken down. Like most other people in the world, I work entirely from home nowadays, even for important meetings.
At the face of this, this seems like a good thing – for example, nowadays, however important a meeting is, the transaction cost is low. An hour long meeting means spending an hour for it (the time taken for prep is separate and hasn’t changed), and there’s no elaborate song-and-dance about it with travel and dressing up and all that.
While this seems far more efficient use of my time, I’m not sure I’m so happy about it. Essentially, I miss the sense of occasion. Now, an important meeting feels no different from an internal meeting with partners, or some trivial update.
Travel to and from an important meeting was a good time to mentally prepare for it, and then take stock of how it was gone. Now, until ten minutes before a meeting, I’m living my life as usual, and the natural boundaries that used to help me prep are also gone.
The other problem with remotely being there in large but important meetings is that it’s really easy to switch off. If you’re not the one who is doing a majority of the talking (or even the listening), it becomes incredibly hard to focus, and incredibly easy to get distracted elsewhere in the computer (it helps if your camera is switched off).
In a “real” physical meeting, however, large the gathering is, it is naturally easy for you to focus (and naturally more difficult to be distracted), and also easier to get involved in the meeting. An online meeting sometimes feels a bit too much like a group discussion, and without visual cues involved, it becomes really hard to butt in and make a point.
So once we are allowed to travel, and to meet, I’m pretty certain that I’ll start travelling a bit for work again. I’ll start with meetings in Bangalore (inter-city travel is likely to be painful for a very long time).
It might involve transaction cost, but a lot of the transaction cost gets recovered in terms of collateral benefits.
I must warn that this is a super long post. Also I wonder if I should put this on medium in order to get more footage.
Most models of disease spread use what is known as a “SIR” framework. This Numberphile video gives a good primer into this framework.
The problem with the framework is that it’s too simplistic. It depends primarily on one parameter “R0”, which is the average number of people that each infected patient infects. When R0 is high, each patient infects a number of other people, and the disease spreads fast. With a low R0, the disease spreads slow. It was the SIR model that was used to produce all those “flatten the curve” pictures that we were bombarded with a week or two back.
There is a second parameter as well – the recovery or removal rate. Some diseases are so lethal that they have a high removal rate (eg. Ebola), and this puts a natural limit on how much the disease can spread, since infected people die before they can infect too many people.
In any case, such modelling is great for academic studies, and post-facto analyses where R0 can be estimated. As we are currently in the middle of an epidemic, this kind of simplistic modelling can’t take us far. Nobody has a clue yet on what the R0 for covid-19 is. Nobody knows what proportion of total cases are asymptomatic. Nobody knows the mortality rate.
And things are changing well-at-a-faster-rate. Governments are imposing distancing of various forms. First offices were shut down. Then shops were shut down. Now everything is shut down, and many of us have been asked to step out “only to get necessities”. And in such dynamic and fast-changing environments, a simplistic model such as the SIR can only take us so far, and uncertainty in estimating R0 means it can be pretty much useless as well.
In this context, I thought I’ll simulate a few real-life situations, and try to model the spread of the disease in these situations. This can give us an insight into what kind of services are more dangerous than others, and how we could potentially “get back to life” after going through an initial period of lockdown.
The basic assumption I’ve made is that the longer you spend with an infected person, the greater the chance of getting infected yourself. This is not an unreasonable assumption because the spread happens through activities such as sneezing, touching, inadvertently dropping droplets of your saliva on to the other person, and so on, each of which is more likely the longer the time you spend with someone.
Some basic modelling revealed that this can be modelled as a sort of negative exponential curve that looks like this.
T is the number of hours you spend with the other person. is a parameter of transmission – the higher it is, the more likely the disease with transmit (holding the amount of time spent together constant).
The function looks like this:
We have no clue what is, but I’ll make an educated guess based on some limited data I’ve seen. I’ll take a conservative estimate and say that if an uninfected person spends 24 hours with an infected person, the former has a 50% chance of getting the disease from the latter.
This gives the value of to be 0.02888 per hour. We will now use this to model various scenarios.
Delivery
This is the simplest model I built. There is one shop, and N customers. Customers come one at a time and spend a fixed amount of time (1 or 2 or 5 minutes) at the shop, which has one shopkeeper. Initially, a proportion of the population is infected, and we assume that the shopkeeper is uninfected.
And then we model the transmission – based on our , for a two minute interaction, the probability of transmission is %.
In hindsight, I realised that this kind of a set up better describes “delivery” than a shop. With a 0.1% probability the delivery person gets infected from an infected customer during a delivery. With the same probability an infected delivery person infects a customer. The only way the disease can spread through this “shop” is for the shopkeeper / delivery person to be uninfected.
How does it play out? I simulated 10000 paths where one guy delivers to 1000 homes (maybe over the course of a week? that doesn’t matter as long as the overall infected rate in the population otherwise is constant), and spends exactly two minutes at each delivery, which is made to a single person. Let’s take a few cases, with different base cases of incidence of the disease – 0.1%, 0.2%, 0.5%, 1%, 2%, 5%, 10%, 20% and 50%.
The number of NEW people infected in each case is graphed here (we don’t care how many got the disease otherwise. We’re modelling how many got it from our “shop”). The right side graph excludes the case of zero new infections, just to show you the scale of the problem.
Notice this – even when 50% of the population is infected, as long as the shopkeeper or delivery person is not initially infected, the chances of additional infections through 2-minute delivery are MINUSCULE. A strong case for policy-makers to enable delivery of all kinds, essential or inessential.
2. SHOP
Now, let’s complicate matters a little bit. Instead of a delivery person going to each home, let’s assume a shop. Multiple people can be in the shop at the same time, and there can be more than one shopkeeper.
Let’s use the assumptions of standard queueing theory, and assume that the inter-arrival time for customers is guided by an Exponential distribution, and the time they spend in the shop is also guided by an Exponential distribution.
At the time when customers are in the shop, any infected customer (or shopkeeper) inside can infect any other customer or shopkeeper. So if you spend 2 minutes in a shop where there is 1 infected person, our calculation above tells us that you have a 0.1% chance of being infected yourself. If there are 10 infected people in the shop and you spend 2 minutes there, this is akin to spending 20 minutes with one infected person, and you have a 1% chance of getting infected.
Let’s consider two or three scenarios here. First is the “normal” case where one customer arrives every 5 minutes, and each customer spends 10 minutes in the shop (note that the shop can “serve” multiple customers simultaneously, so the queue doesn’t blow up here). Again let’s take a total of 1000 customers (assume a 24/7 open shop), and one shopkeeper.
Notice that there is significant transmission of infection here, even though we started with 5% of the population being infected. On average, another 3% of the population gets infected! Open supermarkets with usual crowd can result in significant transmission.
Does keeping the shop open with some sort of social distancing (let’s see only one-fourth as many people arrive) work? So people arrive with an average gap of 20 minutes, and still spend 10 minutes in the shop. There are still 10 shopkeepers. What does it look like when we start with 5% of the people being infected?
The graph is pretty much identical so I’m not bothering to put that here!
3. Office
This scenario simulates for N people who are working together for a certain number of hours. We assume that exactly one person is infected at the beginning of the meeting. We also assume that once a person is infected, she can start infecting others in the very next minute (with our transmission probability).
How does the infection grow in this case? This is an easier simulation than the earlier one so we can run 10000 Monte Carlo paths. Let’s say we have a “meeting” with 40 people (could just be 40 people working in a small room) which lasts 4 hours. If we start with one infected person, this is how the number of infected grows over the 4 hours.
The spread is massive! When you have a large bunch of people in a small closed space over a significant period of time, the infection spreads rapidly among them. Even if you take a 10 person meeting over an hour, one infected person at the start can result in an average of 0.3 other people being infected by the end of the meeting.
10 persons meeting over 8 hours (a small office) with one initially infected means 3.5 others (on average) being infected by the end of the day.
Offices are dangerous places for the infection to spread. Even after the lockdown is lifted, some sort of work from home regulations need to be in place until the infection has been fully brought under control.
4. Conferences
This is another form of “meeting”, except that at each point in time, people don’t engage with the whole room, but only a handful of others. These groups form at random, changing every minute, and infection can spread only within a particular group.
Let’s take a 100 person conference with 1 initially infected person. Let’s assume it lasts 8 hours. Depending upon how many people come together at a time, the spread of the infection rapidly changes, as can be seen in the graph below.
If people talk two at a time, there’s a 63% probability that the infection doesn’t spread at all. If they talk 5 at a time, this probability is cut by half. And if people congregate 10 at a time, there’s only a 11% chance that by the end of the day the infection HASN’T propagated!
One takeaway from this is that even once offices start functioning, they need to impose social distancing measures (until the virus has been completely wiped out). All large-ish meetings by video conference. A certain proportion of workers working from home by rotation.
Ok this is the sort of speculative predictive post that I don’t usually indulge in. However, I think my blog is at the right level of obscurity that makes it conducive for making speculative predictions. It is not popular enough that enough people will remember this prediction in case this doesn’t come through. And it’s not that obscure as well – in case it does come through, I can claim credit.
So my claim is that companies whose work doesn’t involve physically making stuff haven’t explored the possibilities of remote work enough before the current (covid-19) crisis hit. With the gatherings of large people, especially in air-conditioned spaces being strongly discouraged, companies that hadn’t given remote working enough thought are being forced to consider the opportunity now.
My prediction is that once the crisis over and things go back to “normal”, there will be converts. Organisations and teams and individuals who had never before thought that working from home would have taken enough of a liking to the concept to give it a better try. Companies will become more open to remote working, having seen the benefits (or lack of costs) of it in the period of the crisis. People will commute less. They will travel less (at least for work purposes). This is going to have a major impact on the economy, and on cities.
I’m still not done with cities.
For most of history, there has always been a sort of natural upper limit to urbanisation, in the form of disease. Before germ theory became a thing, and vaccinations and cures came about for a lot of common illnesses, it was routine for epidemics to rage through cities from time to time, thus decimating their population. As a consequence, people didn’t live in cities if they could help it.
Over the last hundred years or so (after the “Spanish” flu of 1918), medicine has made sufficient progress that we haven’t seen such disease or epidemics (maybe until now). And so the network effect of cities has far outweighed the problem of living in close proximity to lots of other people.
Especially in the last 30 years or so, as “knowledge work” has formed a larger part of the economies, a disproportionate part of the economic growth (and population growth) has been in large cities. Across the world – Mumbai, Bangalore, London, the Bay Area – a large part of the growth has come in large urban agglomerations.
One impact of this has been a rapid rise in property prices in such cities – it is in the same period that these cities have become virtually unaffordable for the young to buy houses in. The existing large size and rapid growth contribute to this.
Now that we have a scary epidemic around us, which is likely to spread far more in dense urban agglomerations, I imagine people at the margin to reconsider their decisions to live in large cities. If they can help it, they might try to move to smaller towns or suburbs. And the rise of remote work will aid this – if you hardly go to office and it doesn’t really matter where you live, do you want to live in a crowded city with a high chance of being hit by a stray virus?
This won’t be a drastic movement, but I see a marginal redistribution of population in the next decade away from the largest cities, and in favour of smaller towns and cities.It won’t be large, but significant enough to have an impact on property prices. The bull run we’ve seen in property prices, especially in large and fast-growing cities, is likely to see some corrections. Property holders in smaller cities that aren’t too unpleasant to live in can expect some appreciation.
Oh, and speaking of remote work, I have an article in today’s Times Of India about the joys of working from home. It’s not yet available online, so I’ve attached a clipping.
After I wrote about “love and arranged jobs” last week, an old friend got back saying he quite appreciates the concept and he’s seen it in his career as well. He’s fundamentally a researcher, with a PhD, who then made a transition to corporate jobs.
He told me that back in his research days, he had many “love work relationships”, where he would come across and meet people, and they would “flirt” (in a professional sense), and that could lead to a wide range of outcomes. Sometimes they would just have discussions without anything professional coming out of it, sometimes it would result in a paper, sometimes in a longer collaboration, and so on.
Now that he is in the corporate world, he told me that it is mostly “arranged jobs” for him now, and that meeting people for this is much less enjoyable in that sense.
The one phrase that he used in our conversation stuck with me, and has made it to the title of this post. He said that “love jobs” work when people meet with a “range of possibilities” in mind.
And that is precisely how it works in terms of romantic relationships as well. When you go out on a date, you are open to exploring a range of possibilities. It could just be an evening out. It could be a one-night stand. It could result in friendship, with or without benefits. There could be a long-term relationship that is possible. Gene propagation is yet another possible result. There is a rather wide range of possibilities and that is what I suppose makes dating fun (I suppose because I’ve hardly dated. I randomly one day met my wife after three years of blog-commenting, orkutting and GTalking, and we ended up hitting the highest part of the range).
Arranged marriages are not like that – you go into the “date” with a binary possibility in mind – you either settle into a long-term gene-propagating relationship with this person or you wish you never encounter them in life again. There is simply no range, or room for any range.
Job interviews in an arranged sense are like that. You either get the job or you don’t – there is one midpoint, though, where things don’t temporarily work out but you keep open the possibility of working together at a later date. This, however, is an incredibly rare occurrence – the outcome is usually binary.
It’s possible I’m even thinking about this “love jobs” scenario because I’ve been consulting for the last 8 odd years now. In all this time I’ve met several people, and the great part of this has been that the first meeting usually happens without any expectations – both parties are open to a range of possibilities.
Some people I’ve met have tried to hire me (for a job). Some have become friends. Some have given me gigs, some several. Some have first given me gigs and then become friends. Others have asked me to write recommendation letters. Yet others have become partners. And so on.
And this has sort of “spoilt” me into believing that a job can be found through this kind of a “love process” where a range of possibilities is open upon the first meeting itself. And when people try to propose the arranged route (“once we start this process we expect to hire you in a week”) I’ve chickened out.
Thinking about it, that’s how a lot of hiring works. Except maybe for the handful of employers which are infamous for long interview processes (I love those proceses, btw), I guess most of the “industry” is all about arranged jobs.
And maybe that’s why so few people “love” their jobs!
When I first entered the arranged marriage market in early 2009, I had done so with the expectation that I would use it as a sort of dating agency. Remember this was well before the likes of OKCupid or Tinder or TrulyMadly were around, and for whatever reason I had assumed that I could “find chicks” in the arranged marriage market, and then date them for a while before committing.
Now that my wife is in this business, I think my idea was a patently bad one. Each market attracts a particular kind of people, who usually crowd out all other kind of people. And sort of by definition, the arranged marriage market is filled with people looking for arranged marriage. Maybe they just want a Common Minimum Program. But surely, what they are looking for is a quick process where after two (or maximum three) meetings, you commit to someone for life.
So in this kind of a market you want to date, there is an infinitesimal chance of finding someone else who also wants to date. And so you are bound to be disappointed. In this case, you are better off operating in a dating market (such as Tinder, or whatever else did its job ten years ago).
Now that this lengthy preamble is out of the way, let us talk about love and arranged jobs. This has nothing to do with jobs, or work itself. It has everything to do with the process of finding a job. Some of you might find that I, who has been largely out of the job market for over eight years now, to be supremely unqualified to write about jobs, but this outsider view is what allows me to take an objective view of this (just like most other things I write about on this blog).
You get a love job through a sort of lengthy courtship process, like love marriage. You either get introduced to someone, or meet them on twitter, or bump into them at a networking event. Then you have a phone chat, followed by a coffee, and maybe a drink, and maybe a few meals. You talk about work related stuff in most of these, and over time you both realise it makes sense to work together. A formality of an interview process happens, and you start working together.
From my outside view (and having never gotten a job in this manner), I would imagine that this would lead to fulfilling work relationships and satisfying work (the only risk is that the person you have “courted” moves away or up). And when you are looking for a sort of high-trust relationship in a job, this kind of an “interview process” possibly makes sense.
In some ways, you can think about getting a “love job” as following the advise Dale Carnegie dishes out in How To Win Friends and Influence People – make the counterparty like you as a person and you make the sale.
The more common approach in recruitment is “arranged jobs” (an extreme example of this is campus recruitment). This is no nonsense, no beating around the bush approach. In the first conversation, it is evident to both parties that a full time job is a desired outcome of the interaction. Conversations are brisk, and to the point. Soon enough, formal interviews get set up, and the formal process can be challenging.
And if things go well after that, there is a job offer in hand. And soon you are working together. Love, if at all, happens after marriage, as some “aunties” are prone to telling you.
The advantage of this process is that it is quick, and serves both parties well in that respect. The disadvantage is that the short courtship period means that not enough trust has been built between the parties at the time they start working together. This means “proving oneself” in the first few months of getting a job, which is always tricky and set a bad precedent for the rest of the employment.
In the first five years of my career, I moved between four jobs. All of them happened through the arranged process. The one I lasted the longest in (and enjoyed the most, by a long way, though on a relative basis) was the one where the arranged process itself took a long time. I did some sixteen interviews before getting the job, and in the process the team I was going to join had sold itself very well to me.
And that makes me think that if I end up getting back to formal employment some day, it will have to happen through the love process.
In his excellent piece on Everton’s failed recruitment strategy (paywalled), Oliver Kay of the Athletic makes an interesting point – that players seldom do well when they move from a bigger club to a smaller club.
During his time in charge at Arsenal, George Graham used to say that the key to building a team was to buy players who were on the way up — or, alternatively, players who were desperate to prove a point — but to avoid those who might see your club as a soft landing, a comfort zone. “Never buy a player who’s taking a step down to join you,” Graham said. “He will act as if he’s doing you a favour.”
This, I guess, is not unique to football alone – it applies to other jobs as well. When someone joins a company that they think they are “too cool for”, they look at it as a step down, and occasionally behave as if they’re doing the new employer a favour.
One corollary is that working for “the best” can be a sort of lock in for an employee, since wherever he will move from there will be a sort of step down in some way or the other, and that will mean compromises on the part of all parties involved.
Thinking about footballers who have moved from big clubs and still not done badly, I notice one sort of pattern that I call “two steps back and one step forward”. Evidently, I’m basing this analysis on a small number of data points, which might be biased, but let me play management guru and go ahead with my theory.
Basically, if you want to take a “step down” from the best, one way of doing well in the longer term is to take “two steps down” and then later take a step up. The advantage with this approach is that when you take two steps down, you get to operate in an environment far easier than the one you left, and even if you act entitled and take time to adjust you will be able to prove yourself and make an impact in due course.
And at that point in time, when you’ve started making an impact, you are “on the way up”, and can then step up to a club at the next level where you can make an impact.
Players that come to mind that have taken this approach include Jonny Evans, who moved from Ferguson-era Manchester United to West Brom, and then when West Brom got relegated, moved “up” to Leicester. And he’s doing a pretty good job there.
And then there is Xherdan Shaqiri. He made his name as a player at Bayern Munich, and then moved to Inter where he struggled. And then he made what seemed like a shocking move for the time – to Stoke City (of the “cold Thursday night at Stoke” fame) in the Premier League. Finally, last year, after Stoke got relegated from the Premier League, he “stepped up” to Liverpool, where, injuries aside, he’s been doing rather well.
The risk with this two steps down approach, of course, is that sometimes it can fail to come off, and if you don’t make an impact soon enough, you start getting seen as a “two steps down guy”, and even “one step down” can seem well beyond you.
I have a problem with productivity. It’s because I follow what I call the “Ganesha Workflow”.
Basically there are times when I “get into flow”, and at those times I ideally want to just keep going, working ad infinitum, until I get really tired and lose focus. The problem, however, is that it is not so easy to “get into flow”. And this makes it really hard for me to plan life and schedule my day.
So where does Ganesha come into this? I realise that my workflow is similar to the story of how Ganesha wrote the Mahabharata.
As the story goes, Vyasa was looking for a scribe to write down the Mahabharata, which he knew was going to be a super-long epic. And he came across Ganesha, who agreed to write it all down under one condition – that if Vyasa ever stopped dictating, Ganesha would put his pen down and the rest of the epic would remain unwritten.
So Ganesha Workflow is basically the workflow where as long as you are going, you go strong, but the moment you have an interruption, it is really hard to pick up again. Putting it another way, when you are in Ganesha Workflow, context switches are really expensive.
This means the standard corporate process of drawing up a calendar and earmarking times of day for certain tasks doesn’t really work. One workaround I have made to accommodate my Ganesha Workflow is that I have “meeting days” – days that are filled with meetings and when I don’t do any other work. On other days I actively avoid meetings so that my workflow is not disturbed.
While this works a fair bit, I’m still not satisfied with how well I’m able to organise my work life. For one, having a small child means that the earlier process of hitting “Ganesha mode” at home doesn’t work any more – it’s impossible to prevent context switches on the child’s account. The other thing is that there is a lot more to coordinate with the wife in terms of daily household activities, which means things on the calendar every day. And those will provide an interruption whether I like it or not.
I’m wondering what else I can do to accommodate my “Ganesha working style” into “normal work and family life”. If you have any suggestions, please let me know!