## Sigma and normal distributions

I’m in my way to the Bangalore airport now, north of hebbal flyover. It’s raining like crazy again today – the second time in a week it’s raining so bad.

I instinctively thought “today is an N sigma day in terms of rain in Bangalore” (where N is a large number). Then I immediately realized that such a statement would make sense only if rainfall in Bangalore were to follow a normal distribution!

When people normally say something is an N sigma event what they’re really trying to convey is that it is a very improbable event and the N is a measure of this improbability. The relationship between N and the improbability implied is given by the shape of the normal curve.

However when a quantity follow a distribution other than normal the relationship between the mean and standard deviation (sigma) and the implied probability breaks down and the number of sigmas will mean something totally different in terms of the implied improbability.

It is good practice, thus, to stop talking in terms of sigma and talk in terms of of odds. It’s better to say “a one in forty event” rather than saying “two sigma event” (I’m assuming a one tailed normal distribution here).

The broader point is that the normal distribution is too ingrained in people’s minds which leads then to assume all quantities follow a normal distribution – which is dangerous and needs to be discouraged strongly.

In this direction any small measure – like talking odds rather than in terms of sigma – will go a long way!