What is the Case Fatality Rate of Covid-19 in India?

The economist in me will give a very simple answer to that question – it depends. It depends on how long you think people will take from onset of the disease to die.

The modeller in me extended the argument that the economist in me made, and built a rather complicated model. This involved smoothing, assumptions on probability distributions, long mathematical derivations and (for good measure) regressions.. And out of all that came this graph, with the assumption that the average person who dies of covid-19 dies 20 days after the thing is detected.


Yes, there is a wide variation across the country. Given that the disease is the same and the treatment for most people diseased is pretty much the same (lots of rest, lots of water, etc), it is weird that the case fatality rate varies by so much across Indian states. There is only one explanation – assuming that deaths can’t be faked or miscounted (covid deaths attributed to other reasons or vice versa), the problem is in the “denominator” – the number of confirmed cases.

What the variation here tells us is that in states towards the top of this graph, we are likely not detecting most of the positive cases (serious cases will get themselves tested anyway, and get hospitalised, and perhaps die. It’s the less serious cases that can “slip”). Taking a state low down below in this graph as a “good tester” (say Andhra Pradesh), we can try and estimate what the extent of under-detection of cases in each state is.

Based on state-wise case tallies as of now (might be some error since some states might have reported today’s number and some mgiht not have), here are my predictions on how many actual number of confirmed cases there are per state, based on our calculations of case fatality rate.

Yeah, Maharashtra alone should have crossed a million caess based on the number of people who have died there!

Now let’s get to the maths. It’s messy. First we look at the number of confirmed cases per day and number of deaths per day per state (data from here). Then we smooth the data and take 7-day trailing moving averages. This is to get rid of any reporting pile-ups.

Now comes the probability assumption – we assume that a proportion p of all the confirmed cases will die. We assume an average number of days (N) to death for people who are supposed to die (let’s call them Romeos?). They all won’t pop off exactly N days after we detect their infection. Let’s say a proportion \lambda dies each day. Of everyone who is infected, supposed to die and not yet dead, a proportion \lambda will die each day.

My maths has become rather rusty over the years but a derivation I made shows that \lambda = \frac{1}{N}. So if people are supposed to die in an average of 20 days, \frac{1}{20} will die today, \frac{19}{20}\frac{1}{20} will die tomorrow. And so on.

So people who die today could be people who were detected with the infection yesterday, or the day before, or the day before day before (isn’t it weird that English doesn’t a word for this?) or … Now, based on how many cases were detected on each day, and our assumption of p (let’s assume a value first. We can derive it back later), we can know how many people who were found sick k days back are going to die today. Do this for all k, and you can model how many people will die today.

The equation will look something like this. Assume d_t is the number of people who die on day t and n_t is the number of cases confirmed on day t. We get

d_t = p  (\lambda n_{t-1} + (1-\lambda) \lambda n_{t-2} + (1-\lambda)^2 \lambda n_{t-3} + ... )

Now, all these ns are known. d_t is known. \lambda comes from our assumption of how long people will, on average, take to die once their infection has been detected. So in the above equation, everything except p is known.

And we have this data for multiple days. We know the left hand side. We know the value in brackets on the right hand side. All we need to do is to find p, which I did using a simple regression.

And I did this for each state – take the number of confirmed cases on each day, the number of deaths on each day and your assumption on average number of days after detection that a person dies. And you can calculate p, which is the case fatality rate. The true proportion of cases that are resulting in deaths.

This produced the first graph that I’ve presented above, for the assumption that a person, should he die, dies on an average 20 days after the infection is detected.

So what is India’s case fatality rate? While the first graph says it’s 5.8%, the variations by state suggest that it’s a mild case detection issue, so the true case fatality rate is likely far lower. From doing my daily updates on Twitter, I’ve come to trust Andhra Pradesh as a state that is testing well, so if we assume they’ve found all their active cases, we use that as a base and arrive at the second graph in terms of the true number of cases in each state.

PS: It’s common to just divide the number of deaths so far by number of cases so far, but that is an inaccurate measure, since it doesn’t take into account the vintage of cases. Dividing deaths by number of cases as of a fixed point of time in the past is also inaccurate since it doesn’t take into account randomness (on when a Romeo might die).

Anyway, here is my code, for what it’s worth.

deathRate <- function(covid, avgDays) {
covid %>%
mutate(Date=as.Date(Date, '%d-%b-%y')) %>%
gather(State, Number, -Date, -Status) %>%
spread(Status, Number) %>%
arrange(State, Date) -> 

# Need to smooth everything by 7 days 
cov1 %>%
arrange(State, Date) %>%
group_by(State) %>%
ConfirmedMA=(TotalConfirmed-lag(TotalConfirmed, 7))/7,
DeceasedMA=(TotalDeceased-lag(TotalDeceased, 7))/ 7
) %>%
ungroup() %>%
filter(!is.na(ConfirmedMA)) %>%
select(State, Date, Deceased=DeceasedMA, Confirmed=ConfirmedMA) ->

cov2 %>%
select(DeathDate=Date, State, Deceased) %>%
cov2 %>%
select(ConfirmDate=Date, State, Confirmed) %>%
crossing(Delay=1:100) %>%
by = c("DeathDate", "State")
) %>%
filter(DeathDate > ConfirmDate) %>%
arrange(State, desc(DeathDate), desc(ConfirmDate)) %>%
Adjusted=Confirmed * Lambda * (1-Lambda)^(Delay-1)
) %>%
filter(Deceased > 0) %>%
group_by(State, DeathDate, Deceased) %>%
summarise(Adjusted=sum(Adjusted)) %>%
ungroup() %>%
lm(Deceased~Adjusted-1, data=.) %>%
summary() %>%
broom::tidy() %>%
select(estimate) %>%
first() %>%

Covid-19 superspreaders in Karnataka

Through a combination of luck and competence, my home state of Karnataka has handled the Covid-19 crisis rather well. While the total number of cases detected in the state edged past 2000 recently, the number of locally transmitted cases detected each day has hovered in the 20-25 range.

Perhaps the low case volume means that Karnataka is able to give out data at a level that few others states in India are providing. For each case, the rationale behind why the patient was tested (which is usually the source where they caught the disease) is given. This data comes out in two daily updates through the @dhfwka twitter handle.

There was this research that came out recently that showed that the spread of covid-19 follows a classic power law, with a low value of “alpha”. Basically, most infected people don’t infect anyone else. But there are a handful of infected people who infect lots of others.

The Karnataka data, put out by @dhfwka  and meticulously collected and organised by the folks at covid19india.org (they frequently drive me mad by suddenly changing the API or moving data into a new file, but overall they’ve been doing stellar work), has sufficient information to see if this sort of power law holds.

For every patient who was tested thanks to being a contact of an already infected patient, the “notes” field of the data contains the latter patient’s ID. This way, we are able to build a sort of graph on who got the disease from whom (some people got the disease “from a containment zone”, or out of state, and they are all ignored in this analysis).

From this graph, we can approximate how many people each infected person transmitted the infection to. Here are the “top” people in Karnataka who transmitted the disease to most people.

Patient 653, a 34 year-old male from Karnataka, who got infected from patient 420, passed on the disease to 45 others. Patient 419 passed it on to 34 others. And so on.

Overall in Karnataka, based on the data from covid19india.org as of tonight, there have been 732 cases where a the source (person) of infection has been clearly identified. These 732 cases have been transmitted by 205 people. Just two of the 205 (less than 1%) are responsible for 79 people (11% of all cases where transmitter has been identified) getting infected.

The top 10 “spreaders” in Karnataka are responsible for infecting 260 people, or 36% of all cases where transmission is known. The top 20 spreaders in the state (10% of all spreaders) are responsible for 48% of all cases. The top 41 spreaders (20% of all spreaders) are responsible for 61% of all transmitted cases.

Now you might think this is not as steep as the “well-known” Pareto distribution (80-20 distribution), except that here we are only considering 20% of all “spreaders”. Our analysis ignores the 1000 odd people who were found to have the disease at least one week ago, and none of whose contacts have been found to have the disease.

I admit this graph is a little difficult to understand, but basically I’ve ordered people found for covid-19 in Karnataka by number of people they’ve passed on the infection to, and graphed how many people cumulatively they’ve infected. It is a very clear pareto curve.

The exact exponent of the power law depends on what you take as the denominator (number of people who could have infected others, having themselves been infected), but the shape of the curve is not in question.

Essentially the Karnataka validates some research that’s recently come out – most of the disease spread stems from a handful of super spreaders. A very large proportion of people who are infected don’t pass it on to any of their contacts.

This year on Spotify

I’m rather disappointed with my end-of-year Spotify report this year. I mean, I know it’s automated analytics, and no human has really verified it, etc.  but there are some basics that the algorithm failed to cover.

The first few slides of my “annual report” told me that my listening changed by seasons. That in January to March, my favourite artists were Black Sabbath and Pink Floyd, and from April to June they were Becky Hill and Meduza. And that from July onwards it was Sigala.

Now, there was a life-changing event that happened in late March which Spotify knows about, but failed to acknowledge in the report – I moved from the UK to India. And in India, Spotify’s inventory is far smaller than it is in the UK. So some of the bands I used to listen to heavily in the UK, like Black Sabbath, went off my playlist in India. My daughter’s lullaby playlist, which is the most consumed music for me, moved from Spotify to Amazon Music (and more recently to Apple Music).

The other thing with my Spotify use-case is that it’s not just me who listens to it. I share the account with my wife and daughter, and while I know that Spotify has an algorithm for filtering out kid stuff, I’m surprised it didn’t figure out that two people are sharing this account (and pitched us a family subscription).

According to the report, these are the most listened to genres in 2019:

Now there are two clear classes of genres here. I’m surprised that Spotify failed to pick it out. Moreover, the devices associated with my account that play Rock or Power Metal are disjoint from the devices that play Pop, EDM or House. It’s almost like Spotify didn’t want to admit that people share accounts.

Then some three slides on my podcast listening for the year, when I’ve overall listened to five hours of podcasts using Spotify. If I, a human, were building this report, I would have dropped this section citing insufficient data, rather than wasting three slides with analytics that simply don’t make sense.

I see the importance of this segment in Spotify’s report, since they want to focus more on podcasts (being an “audio company” rather than a “music company”), but maybe something in the report to encourage me to use Spotify for more podcasts (maybe recommending Spotify’s exclusive podcasts that I might like, be it based on limited data?) might have helped.

Finally, take a look at my our most played songs in 2019.

It looks like my daughter’s sleeping playlist threaded with my wife’s favourite songs (after a point the latter dominate). “My songs” are nowhere to be found – I have to go all the way down to number 23 to find Judas Priest’s cover of Diamonds and Rust. I mean I know I’ve been diversifying the kind of music that I listen to, while my wife listens to pretty much the same stuff over and over again!

In any case, automated analytics is all fine, but there are some not-so-edge cases where the reports that it generates is obviously bad. Hopefully the people at Spotify will figure this out and use more intelligence in producing next year’s report!

Yet another “big data whisky”

A long time back I had used a primitive version of my Single Malt recommendation app to determine that I’d like Ardbeg. Presently, the wife was travelling to India from abroad, and she got me a bottle. We loved it.

And so I had screenshots from my app stored on my phone all the time, to be used while at duty frees, so I would know what whiskies to buy.

And then about a year back, we started planning a visit to Scotland. If you remember, we were living in London then, and my wife’s cousin and her family were going to visit us over Christmas. And the plan was to go to the Scottish Highlands for a few days. And that had to include a distillery tour.

Out came my app again, to determine which distillery to visit. I had made a scatter plot (which I have unfortunately lost since) with the distance from Inverness (where we were going to be based) on one axis, and the likelihood of my wife and I liking a whisky (based on my app) on the other (by this time, Ardbeg was firmly in the “calibration set”).

The clear winner was Clynelish – it was barely 100 kilometers away from Inverness, promised a nice drive there, and had a very high similarity score to the stuff that we liked. I presently called them to make a booking for a distillery tour. The only problem was that it’s a Diageo distillery, and Diageo distillery doesn’t allow kids inside (we were travelling with three of them).

I was proud of having planned my vacation “using data science”. I had made up a blog post in my head that I was going to write after the vacation. I was basically picturing “turning around to the umpire and shouting ‘howzzat'”. And then my hopes were dashed.

A week after I had made the booking, I got a call back from the distillery informing me that it was unfortunately going to be closed during our vacation, and so we couldn’t visit. My heart sank. We finally had to make do with two distilleries that were pretty close to Inverness, but which didn’t rate highly according to my app.

My cousin-in-law-in-law and I first visited Glen Ord, another Diageo distillery, leaving our wives and kids back in the hotel. The tour was nice, but the whisky at the distillery was rather underwhelming. The high point was the fact that Glen Ord also supplies highly peated malt to other Diageo distilleries such as Clynelish (which we couldn’t visit) and Talisker (one of my early favourites).

A day later, we went to the more family friendly Tomatin distillery, to the south of Inverness (so we could carry my daughter along for the tour. She seemed to enjoy it. The other kids were asleep in the car with their dad). The tour seemed better there, but their flagship whisky seemed flat. And then came Cu Bocan, a highly peated whisky that they produce in very limited quantities and distribute in a limited fashion.

Initially we didn’t feel anything, but then the “smoke hit from the back”. Basically the initial taste of the whisky was smooth, but as you swallowed it, the peat would hit you. It was incredibly surreal stuff. We sat at the distillery’s bar for a while downing glasses full of Cu Bocan.

The cousin-in-law-in-law quickly bought a bottle to take back to Singapore. We dithered, reasoning we could “use Amazon to deliver it to our home in London”. The muhurta for the latter never arrived, and a few months later we were on our way to India. Travelling with six suitcases and six handbags and a kid meant that we were never going to buy duty free stuff on our way home (not that Cu Bocan was available in duty free).

In any case, Clynelish is also not widely available in duty free shops, so we couldn’t have that as well for a long time. And then we found an incredibly well stocked duty free shop in Maldives, on our way back from our vacation there in August. A bottle was duly bought.

And today the auspicious event arrived for the bottle to be opened. And it’s spectacular. A very different kind of peat than Lagavulin (a bottle of which we just finished yesterday). This one hits the mouth from both the front and the back.

And I would like to call Clynelish the “new big data whisky”, having discovered it through my app, almost going there for a distillery tour, and finally tasting it a year later.

Highly recommended! And I’d highly recommend my app as well!


Telling stories with data

I’m about 20% through with The Verdict by Prannoy Roy and Dorab Sopariwala. It’s a fascinating book, except for one annoyance – it is full of tables that serve no purpose but to break the flow of text.

I must mention that I’m reading the book on the Kindle, which means that the tables can pose a major annoyance. Text breaks off midway through one page, and the next couple of pages involve a table or two, with several lines of text explaining what’s in the table. And then the text continues. It makes for a rather disruptive reading experience. And some of the tables have just one data point – making one wonder why it has been inserted there at all.

This is not the first book that I’ve noticed that makes this mistake. Some of the sports analytics books I’ve read in recent times, such as The Numbers Game also make the same error (I read that in print, and still had the same disruption). Bhagwati and Panagariya’s Why Growth Matters is similarly unreadable. Tables abruptly inserted into the middle of text, leading to the reader losing flow in the reading.

Telling a data story in book length is a completely different challenge to telling one in article length. And telling a story with data is a complete art form. When you’re putting a table there, you need to be able to explain why that table is important to the story – rather than putting it there just because it seems more rigorous.

Also the exact placement of the table (something that can’t be controlled well in Kindle, but is easy to fix in either HTML or print) matters –  the table should be relevant to the piece of text immediately preceding and succeeding it, in a way that it doesn’t disrupt the reader’s flow. More importantly, the table should be able to add value at that particular point – perhaps building on something that has been described in the previous paragraph.

Book length makes it harder because people don’t normally expect tables and figures to disturb their reading flow when reading something of book length. Also, the book format means that it is not always possible to insert a table at a precise point (even in print, where pagination is an issue).

So how do you tell a book length story with data? Firstly, be very stingy about the data that you want to show – anything that doesn’t immediately add value should be banished to the appendix. Even the rigour, which academics might be particular about, can be pushed to the end notes (not footnotes, since those can be disruptive to flow as well, turning pages into half pages).

Then, once you know that showing a particular table or graph is inevitable to telling the story, put it either in the beginning or the end of a chapter. This way, it doesn’t break the reader’s flow. Then, refer to individual numbers in the middle of the text without having to put the entire table in there. Unless each and every data point in the table is important, banish it to the endnotes.

One other common mistake (I did it in my piece in Forbes published yesterday) is to put a big table and not talk about it. It only seeks to confuse the reader, who starts looking for explanations for everything in the table in later parts.

I guess authors and analysts tend to get possessive. If you have worked hard to produce insights from data, you seek to share as much of it as possible. And this can mean simply dumping data all the data in the piece without a regard for what the reader will do with it.

I’m making a note to myself to not repeat this mistake in future.

The (missing) Desk Quants of Main Street

A long time ago, I’d written about my experience as a Quant at an investment bank, and about how banks like mine were sitting on a pile of risk that could blow up any time soon.

There were two problems as I had documented then. Firstly, most quants I interacted with seemed to be solving maths problems rather than finance problems, not bothering if their models would stand the test of markets. Secondly, there was an element of groupthink, as quant teams were largely homogeneous and it was hard to progress while holding contrarian views.

Six years on, there has been no blowup, and in some sense banks are actually doing well (I mean, they’ve declined compared to the time just before the 2008 financial crisis but haven’t done that badly). There have been no real quant disasters (yes I know the Gaussian Copula gained infamy during the 2008 crisis, but I’m talking about a period after that crisis).

There can be many explanations regarding how banks have not had any quant blow-ups despite quants solving for math problems and all thinking alike, but the one I’m partial to is the presence of a “middle layer”.

Most of the quants I interacted with were “core” in the sense that they were not attached to any sales or trading desks. Banks also typically had a large cadre of “desk quants” who are directly associated with trading teams, and who build models and help with day-to-day risk management, pricing, etc.

Since these desk quants work closely with the business, they turn out to be much more pragmatic than the core quants – they have a good understanding of the market and use the models more as guiding principles than as rules. On the other hand, they bring the benefits of quantitative models (and work of the core quants) into day-to-day business.

Back during the financial crisis, I’d jokingly predicted that other industries should hire quants who were now surplus to Wall Street. Around the same time, DJ Patil et al came up with the concept of the “data scientist” and called it the “sexiest job of the 21st century”.

And so other industries started getting their own share of quants, or “data scientists” as they were now called. Nowadays its fashionable even for small companies for whom data is not critical for business to have a data science team. Being in this profession now (I loathe calling myself a “data scientist” – prefer to say “quant” or “analytics”), I’ve come across quite a few of those.

The problem I see with “data science” on “Main Street” (this phrase gained currency during the financial crisis as the opposite of Wall Street, in that it referred to “normal” businesses) is that it lacks the cadre of desk quants. Most data scientists are highly technical people who don’t necessarily have an understanding of the business they operate in.

Thanks to that, what I’ve noticed is that in most cases there is a chasm between the data scientists and the business, since they are unable to talk in a common language. As I’m prone to saying, this can go two ways – the business guys can either assume that the data science guys are geniuses and take their word for the gospel, or the business guys can totally disregard the data scientists as people who do some esoteric math and don’t really understand the world. In either case, value added is suboptimal.

It is not hard to understand why “Main Street” doesn’t have a cadre of desk quants – it’s because of the way the data science industry has evolved. Quant at investment banks has evolved over a long period of time – the Black-Scholes equation was proposed in the early 1970s. So the quants were first recruited to directly work with the traders, and core quants (at the banks that have them) were a later addition when banks realised that some quant functions could be centralised.

On the other hand, the whole “data science” growth has been rather sudden. The volume of data, cheap incrementally available cloud storage, easy processing and the popularity of the phrase “data science” have all increased well-at-a-faster rate in the last decade or so, and so companies have scrambled to set up data teams. There has simply been no time to train people who get both the business and data – and the data scientists exist like addendums that are either worshipped or ignored.

When a two-by-two ruins a scatterplot

The BBC has some very good analysis of the Brexit vote (how long back was that?), using voting data at the local authority level, and correlating it with factors such as ethnicity and educational attainment.

In terms of educational attainment, there is a really nice chart, that shows the proportion of voters who voted to leave against the proportion of population in the ward with at least a bachelor’s degree. One look at the graph tells you that the correlation is rather strong:

‘Source: http://www.bbc.com/news/uk-politics-38762034And then there is the two-by-two that is superimposed on this – with regions being marked off in pink and grey. The idea of the two-by-two must have been to illustrate the correlation – to show that education is negatively correlated with the “leave” vote.

But what do we see here? A majority of the points lie in the bottom left pink region, suggesting that wards with lower proportion of graduates were less likely to leave. And this is entirely the wrong message for the graph to send.

The two-by-two would have been useful had the points in the graph been neatly divided into clusters that could be arranged in a grid. Here, though, what the scatter plot shows is a nice negatively correlated linear relationship. And by putting those pink and grey boxes, the illustration is taking attention away from that relationship.

Instead, I’d simply put the scatter plot as it is, and maybe add the line of best fit, to emphasise the negative correlation. If I want to be extra geeky, I might also write down the R^2 next to the line, to show the extent of correlation!


Financial inclusion and cash

Varad Pande and Nirat Bhatnagar have an interesting Op-Ed today in Mint about financial inclusion, and about how financial institutions haven’t been innovative to make products that are suited to the poor, and how better user interface can also drive financial inclusion. I found this example they took rather interesting:

Take, for instance, a daily wager who makes Rs200 on the days she gets work. Work is unpredictable, and expenses too can be volatile, so she has to borrow money for buying vegetables, or to pay the doctor’s fees when her children fall sick. Her real need is for a flexible—small ticket, variable amount, rapid approval—loan product that she can access instantly. Unfortunately, no institutional channel—neither the public sector bank where she has a “no frills” account, nor the MFI that she has previously borrowed from—offers such a product. She ends up borrowing from neighbours, often from the local moneylender.

Now, based on my experience in FinTech, it is not hard to design a loan product for someone whose cash flows are known. The bank statement is nothing but a continuing story of the account holder’s life, and if you can understand the cash flows (both in and out) for a reasonable period of time, it is straightforward to design a loan product that fits that cash flow pattern.

The key thing, however, is that you need to have full information on transactions, in terms of when cash comes in and goes out, what the cash outflow is used for, and all that. And that is where the cash economy is a bit of a bummer.

For a banker who is trying to underwrite, and decide the kind of loan product (and interest rate) to offer to a customer, the customer’s cash transactions obscure information; information that could’ve been used by the bank to design/structure/recommend the appropriate product for the customer.

For the case that Pande and Bhatnagar take, if all inflows and outflows are in cash, there is little beyond the potential borrower’s word that can convince bankers of the borrower’s creditworthiness. And so the potential borrower is excluded from the system.

If, on the other hand, the potential borrower were to have used non-cash means for all her transactions, bankers would have had a full picture of her life, and would have been able to give her an appropriate loan!

In this sense, I think so far financial inclusion has been going on ass-backwards, with most microfinance institutions (MFIs) targeting loans rather than deposits. And with little data to base credit on, it’s resulted in wide credit spreads and interest rates that might be seen as usurious.

Instead, if banks and MFIs had gone the other way, first getting customers to deposit, and then use the bank account for as much of their transactions as possible, it would have been possible to design much better financial products, and include more customers!

The current disruption in the cash economy possibly offers banks and MFIs a good chance to rectify their errors so far!

Intermediation and the battle for data

The Financial Times reports ($) that thanks to the rise of AliPay and WeChat’s payment system, China’s banks are losing significantly in terms of access to customer data. This is on top of the $20Billion or so they’re losing directly in terms of fees because of these intermediaries.

But when a consumer uses Alipay or WeChat for payment, banks do not receive data on the merchant’s name and location. Instead, the bank record simply shows the recipient as Alipay or WeChat.

The loss of data poses a challenge to Chinese banks at a time when their traditional lending business is under pressure from interest-rate deregulation, rising defaults, and the need to curb loan growth following the credit binge. Big data are seen as vital to lenders’ ability to expand into new business lines.

I had written about this earlier on my blog about how intermediaries such as Swiggy or Grofers, by offering a layer between the restaurant/shop and consumer, now have access to the consumer’s data which earlier resided with the retailer.

What is interesting is that before businesses realised the value of customer data, they had plenty of access to such data and were doing little to leverage and capitalise on it. And now that people are realising the value of data, new intermediaries that are coming in are capturing the data instead.

From this perspective, the Universal Payment Interface (UPI) that launched last week is a key step for Indian banks to hold on to customer data which they could have otherwise lost to payment wallet companies.

Already, some online payments are listed on my credit card statement in the name of the payment gateway rather than in the name of the merchant, denying the credit card issuers data on the customer’s spending patterns. If the UPI can truly take off as a successor to credit cards (rather than wallets), banks can continue to harness customer data.

Mike Hesson and cricket statistics

While a lot is made of the use of statistics in cricket, my broad view based on presentation of statistics in the media and the odd player/coach interview is that cricket hasn’t really learnt how to use statistics as it should. A lot of so-called insights are based on small samples, and coaches such as Peter Moores have been pilloried for their excess focus on data.

In this context, I found this interview with New Zealand coach Mike Hesson in ESPNCricinfo rather interesting. From my reading of the interview, he seems to “get” data and how to use it, and helps explain the general over-performance to expectations of the New Zealand cricket team in the last few years.

Some snippets:

You’re trying to look at trends rather than chuck a whole heap of numbers at players.

For example, if you look at someone like Shikhar Dhawan, against offspin, he’s struggled. But you’ve only really got a nine or ten-ball sample – so you’ve got to make a decision on whether it’s too small to be a pattern

Also, players take a little while to develop. You’re trying to select the player for what they are now, rather than what their stats suggest over a two or three-year period.

And there are times when you have to revise your score downwards. In our first World T20 match, in Nagpur, we knew it would slow up,


Go ahead and read the whole thing.