Earlier this week I started watching this series on Netflix called “Terrorism Close Calls“. Each episode is about an instance of attempted terrorism that has been foiled in the last 2 decades. For example, there is one example of the plot to bomb a set of transatlantic flights from London to North America in 2006 (a consequence of which is that liquids still aren’t allowed on board flights).
So the first episode of the series involves this Afghani guy who drives all the way from Colorado to New York to place a series of bombs in the latter’s subways (metro train system). He is under surveillance through the length of his journey, and just as he is about to enter New York, he is stopped for what seems like a “routine drugs test”.
As the episode explains, “a set of dogs went around his car sniffing”, but “rather than being trained to sniff drugs” (as is routine in such a stop), “these dogs had been trained to sniff explosives”.
This little snippet got me thinking about how machines are “trained” to “learn”. At the most basic level, machine learning involves showing a large number of “positive cases” and “negative cases” based on which the program “learns” the differences between the positive and negative cases, and thus to identify the positive cases.
So if you want to built a system to identify cats in an image, you feed the machine a large number of images with cats in them, and a large(r) number of images without cats in them, each appropriately “labelled” (“cat” or “no cat”) and based on the differences, the system learns to identify cats.
Similarly, if you want to teach a system to detect cancers based on MRIs, you show it a set of MRIs that show malignant tumours, and another set of MRIs without malignant tumours, and sure enough the machine learns to distinguish between the two sets (you might have come across claims of “AI can cure cancer”. This is how it does it).
However, AI can sometimes go wrong by learning the wrong things. For example, an algorithm trained to recognise sheep started classifying grass as “sheep” (since most of the positive training samples had sheep in meadows). Another system went crazy in its labelling when an unexpected object (an elephant in a drawing room) was present in the picture.
While machines learn through lots of positive and negative examples, that is not how humans learn, as I’ve been observing as my daughter grows up. When she was very little, we got her a book with one photo each of 100 different animals. And we would sit with her every day pointing at each picture and telling her what each was.
Soon enough, she could recognise cats and dogs and elephants and tigers. All by means of being “trained on” one image of each such animal. Soon enough, she could recognise hitherto unseen pictures of cats and dogs (and elephants and tigers). And then recognise dogs (as dogs) as they passed her on the street. What absolutely astounded me was that she managed to correctly recognise a cartoon cat, when all she had seen thus far were “real cats”.
So where do animals stand, in this spectrum of human to machine learning? Do they recognise from positive examples only (like humans do)? Or do they learn from a combination of positive and negative examples (like machines)? One thing that limits the positive-only learning for animals is the limited range of their communication.
What drives my curiosity is that they get trained for specific things – that you have dogs to identify drugs and dogs to identify explosives. You don’t usually have dogs that can recognise both (specialisation is for insects, as they say – or maybe it’s for all non-human animals).
My suspicion (having never had a pet) is that the way animals learn is closer to how humans learn – based on a large number of positive examples, rather than as the difference between positive and negative examples. Just that the limit of the animal’s communication being limited means that it is hard to train them for more than one thing (or maybe there’s something to do with their mental bandwidth as well. I don’t know).
What do you think? Interestingly enough, there is a recent paper that talks about how many machine learning systems have “animal-like abilities” rather than coming close to human intelligence.
For millions of years, mankind lived, just like the animals.
And then something happened that unleashed the power of our imagination. We learned to talk
– Stephen Hawking, in the opening of a Roger Waters-less Pink Floyd’s Keep Talking