Beer and diapers: Netflix edition

When we started using Netflix last May, we created three personas for the three of us in the family – “Karthik”, “Priyanka” and “Berry”. At that time we didn’t realise that there was already a pre-created “kids” (subsequently renamed “children” – don’t know why that happened) persona there.

So while Priyanka and I mostly use our respective personas to consume Netflix (our interests in terms of video content hardly intersect), Berry uses both her profile and the kids profile for her stuff (of course, she’s too young to put it on herself. We do it for her). So over the year, the “Berry” profile has been mostly used to play Peppa Pig, and the occasional wildlife documentary.

Which is why we were shocked the other day to find that “Real life wife swap” had been recommended on her account. Yes, you read that right. We muttered a word of abuse about Netflix’s machine learning algorithms and since then have only used the “kids” profile to play Berry’s stuff.

Since then I’ve been wondering what made Netflix recommend “real life wife swap” to Berry. Surely, it would have been clear to Netflix that while it wasn’t officially classified as one, the Berry persona was a kid’s account? And even if it didn’t, didn’t the fact that the account was used for watching kids’ stuff lead the collaborative filtering algorithms at Netflix to recommend more kids’ stuff? I’ve come up with various hypotheses.

Since I’m not Netflix, and I don’t have their data, I can’t test it, but my favourite hypothesis so far involves what is possibly the most commonly cited example in retail analytics – “beer and diapers“. In this most-likely-apocryphal story, a supermarket chain discovered that beer and diapers were highly likely to appear together in shopping baskets. Correlation led to causation and a hypothesis was made that this was the result of tired fathers buying beer on their diaper shopping trips.

So the Netflix version of beer-and-diapers, which is my hypothesis, goes like this. Harrowed parents are pestered by their kids to play Peppa Pig and other kiddie stuff. The parents are so stressed that they don’t switch to the kid’s persona, and instead play Peppa Pig or whatever from their own accounts. The kid is happy and soon goes to bed. And then the parent decides to unwind by watching some raunchy stuff like “real life wife swap”.

Repeat this story in enough families, and you have a strong enough pattern that accounts not explicitly classified as “kids/children” have strong activity of both kiddie stuff and adult content. And when you use an account not explicitly mentioned as “kids” to watch kiddie stuff, it gets matched to these accounts that have created the pattern – Netflix effectively assumes that watching kid stuff on an adult account indicates that the same account is used to watch adult content as well. And so serves it to Berry!

Machine learning algorithms basically work on identifying patterns in data, and then fitting these patterns on hitherto unseen data. Sometimes the patterns make sense – like Google Photos identifying you even in your kiddie pics. Other times, the patterns are offensive – like the time Google Photos classified a black woman as a “gorilla“.

Thus what is necessary is some level of human oversight, to make sure that the patterns the machine has identified makes some sort of sense (machine learning purists say this is against the spirit of machine learning, since one of the purposes of machine learning is to discover patterns not perceptible to humans).

That kind of oversight at Netflix would have suggested that you can’t tag a profile to a “kiddie content AND adult content” category if the profile has been used to watch ONLY kiddie content (or ONLY adult content). And that kind of oversight would have also led Netflix to investigate issues of users using “general” account for their kids, and coming up with an algorithm to classify such accounts as kids’ accounts, and serve only kids’ content there.

It seems, though, that algorithms run supreme at Netflix, and so my baby daughter gets served “real life wife swap”. Again, this is all a hypothesis (real life wife swap being recommended is a fact, of course)!