One of the greatest engineering problems in the last century was to determine the patterns in the flow of the Nile. It had been clear for at least a couple of millennia that the flow of the river was not regular, and the annual flow did not follow something like a normal distribution.

The matter gained importance in the late 1800s when the British colonial government decided to dam the Nile. Understanding accurately the pattern of flows of the river was important to determine the capacity of the reservoir being built, so that both floods and droughts could be contained.

The problem was solved by Harold Edwin Hurst, a British hydrologist who was posted in Egypt for over 60 years in the 20th Century. Hurst defined his model as one of “long-range dependence”, and managed to accurately predict the variation in the flow of the river. In recognition of his services, Egyptians gave him the moniker “Abu Nil” (father of the Nile). Later on, Benoit Mandelbrot named a quantity that determines the long-range dependence of a time series after Hurst.

I’ve written about Hurst once before, in the context of financial markets, but I invoke him here with respect to a problem closer to me – the pattern of my daughter’s poop.

It is rather well known that poop, even among babies, is not a continuous process. If someone were to poop 100ml of poop a day (easier to use volume rather than weight in the context of babies), it doesn’t mean they poop 4ml every hour. Poop happens in discrete bursts, and the number of such bursts per day depends upon age, decreasing over time into adulthood.

One might think that a reasonable way to model poop is to assume that the amount of poop in each burst follows a normal distribution, and each burst is independent of the ones around it. However, based on a little over two months’ experience of changing my daughter’s diapers, I declare this kind of a model to be wholly inaccurate.

For, what I’ve determined is that far from being normal, pooping patterns follow long-range dependence. There are long time periods (spanning a few diaper changes) when there is no, or very little, poop. Then there are times when it flows at such a high rate that we need to change diapers at a far higher frequency than normal. And such periods are usually followed by other high-poop periods. And so on.

In other words, the amount of poop has positive serial correlation. And to use the index that Mandelbrot lovingly constructed and named in honour of Hurst, the Hurst exponent of my daughter’s (and other babies’) poop is much higher than 0.5.

This makes me wonder if diaper manufacturers have taken this long-range dependence into account while determining diaper capacity. Or I wonder if, instead, they simply assume that parents will take care of this by adjusting the inter-diaper-change time period.

As Mandelbrot describes towards the end of his excellent *Misbehaviour of markets *, you can use so-called “multifractal models” which combine normal price increments with irregular time increments to get an accurate (fractal) representation of the movement of stock prices.

PS: Apologies to those who got disgusted by the post. Until a massive burst a few minutes ago I’d never imagined I’d be comparing the flows of poop and the Nile!